INTRODUCTION

This tank is an approximately 210k-gallon vertical aboveground storage tank, reportedly fabricated of carbon steel in 1970, by Tank Manufacturer, Inc. The tank is approximately 30’ diameter by 40’ high, and is mounted on a concrete foundation.

The ultrasonic thickness equipment used for the roof, and shell inspection was a Krautkramer Branson DMS II (this unit is capable of obtaining thickness readings through applied coatings; it has a digital CRT screen and numeric readout). A 560TC - ½", 5.0 MHz dual element transducer was used. All testing was performed as outlined in our procedure #A-401, revision 8 (Ultrasonic Thickness Examination). Refer to the attached tabular list for all thickness values.

Ultrasonic thickness readings were taken around external patch plates on the shell. Refer to drawing K0000-D-03 for thickness values, patch dimensions and locations. Corroded areas noted above patch plates that do not appear to affect the integrity at this time. Recommendations are to sand blast these areas and apply protective coating.

Please see the following narrative, attachments, figures, and drawing(s) for the details of this inspection.

GENERAL OBSERVATIONS

The tank was in-service at the time of this inspection. The mechanical integrity of the tank does NOT appear to meet the requirements of API-653.

Shell – The shell consists of six (6) courses and does NOT appear to be in a serviceable condition for the following reasons:

1. Shell course weld alignment and spacing on upper shell courses on the south side, does not meet API-650, section 3.1.5.3.b. (See drawing K0000-D-01, and Fig. 5 and 6)
 Recommend radiographic weld inspection to determine weld integrity and course of action (if any).

2. Penetration on west side of tank, on 1st-to-2nd shell course weld seam, has no reinforcing plate per API-650, section 3.7.2. (See P2 on drawing K0000-D-01, and Fig. 2)
 Recommend installing reinforcing plate per API-650

3. Multiple shell inserts with non-rounded corners does not meet API-653, section 9.2 and table 9.1. (See drawing K0000-D-01 and Fig. 9 and 10)
 Recommend radiographic weld inspection to determine weld integrity and course of action (if any).
See the attached eight pages of pictures and the following line items for issues that do not appear to affect the integrity of this tank. Thickness forecasting of the shell shows a life expectancy of at least 10 years.

Floor – Major scale corrosion on floor protrusion, however, does not exceed minimum wall. Vacuum box inspection was performed on 100% of floor seam welds and floor-to-shell weld. No relevant indications were found at the time of inspection. Please refer to drawing K0000-D-01 for all ultrasonic thickness values and locations on the floor. Thickness forecasting of the floor shows a life expectancy of at least 10 years.

Foundation - appears to be in a serviceable condition.

Welds – Horizontal welds contain minor porosity and undercut.

Pitting – Shell pitting does not exceed maximum allowable pitting per API-653. Multiple pitted areas noted on the third shell course with pits up to 0.120” deep. This pit depth subtracted from the nearest thickness measurement location, calculates a thickness of approximately 0.190” vs. a minimum wall calculation of 0.151”. Multiple gouges and temporary weld attachments on shell, not filled and ground smooth with base metal.

Secondary Containment – There is no secondary containment or leak detection for this tank.

Roof – is not accessible due to major corrosion on access ladder. Inspection from manlift showed the roof to be in a serviceable condition. One bolt is missing from roof manway.

Grounding/Cathodic Protection – This tank *appears* to have a grounding strap attached at the time of inspection. There is no cathodic protection on this tank.

Tank Plumbness/Out of Round/Tilt/Settlement - *appears* to be within the specifications of API 653 (see attached deflection settlement readings).

Exterior Coating – Coating failure on east side of tank, and around appurtenances. Other areas have minor sags, drips and embedded products that do not appear to affect the protection of this tank, and *appear* to be in serviceable condition. Dry film thickness is 10-14 mils.

Overfill Protection System - *appears* to be functioning correctly.

Appurtenances – have corrosion, but *appear* to be in serviceable condition.

RECOMMENDATIONS
General – Tank should be repaired to recommendations below:

Shell - Consideration should be given to:

1. Sandblast and apply protective coating
2. Remove shell patches and repair shell in accordance with API-653
3. Seal tank floor protrusion to concrete foundation interface after repairs, to prevent moisture from migrating under the tank
4. Perform radiographic weld inspections of non-rounded shell inserts and non-conforming weld seams, as indicated above
5. Install reinforcing plate around 8” penetration on lower west side of tank

Roof – Consideration should be given to:

1. Install missing bolt in roof manway
2. Sandblast and apply protective coating

Nova Data Testing Services, Inc. makes no implied or expressed warranty that these recommendations would return any tank to serviceability.

Please contact Nova Data Testing Services at the numbers below for information on detailed repair specifications or quality assurance for this, or any other project.
Fig. 1 – Major scale corrosion of floor protrusion

Fig. 2 – Penetration with no reinforcing plate
Fig. 3 – Major pitting on the third shell course, south side of tank

Fig. 4 – Poor and excessive weld on penetration reinforcing plate (East side)
Fig. 5 – Weld spacing does not meet API-650 or good engineering practices

Fig. 6 – Weld spacing does not meet API-650 or good engineering practices
Fig. 7 – Shell plate misalignment near roof on the south side

Fig. 8 – Roof manway is corroded and missing one bolt
Fig. 9 – Corrosion on west side and multiple shell insert plates with non-rounded corners

Fig. 10 – Typical shell insert plate with non-rounded corners
Fig. 11 – Major scale corrosion on ladder. Lower rungs have been removed to prevent access

Fig. 12 – Multiple attachments with non-rounded corners, poor weld quality, and major corrosion (south-east side)
Fig. 13 – Minor shell deflection on upper second shell course (south-east side of tank)

Fig. 14 – Attachments on lower second shell course on the east side of tank
Fig. 15 – Isolated major corrosion on east side of lower second shell course

Fig. 16 – Minor shell deflection between 1st and 2nd shell course on east side of tank
Tank Inspection Program

Report Date: 1/1/2005
Inspection Lab: Nova Data Testing
Technicians: Barksdale/Czaplicki
Inspection Start: 1/1/2005

Tank Information
- **Tank ID:** #2
- **Description:** Big Tank

Readings

<table>
<thead>
<tr>
<th>Course No</th>
<th>Surface</th>
<th>38.5</th>
<th>39</th>
<th>39.5</th>
<th>40</th>
<th>40.5</th>
<th>41</th>
<th>41.5</th>
<th>MIN. WALL</th>
<th>Flag</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>2</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>3</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>4</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>5</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>6</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>7</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>8</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>9</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>10</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>11</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>12</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>13</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>14</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>15</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
<tr>
<td>16</td>
<td>Roof</td>
<td>.325</td>
<td>.330</td>
<td>.340</td>
<td>.355</td>
<td>.355</td>
<td>.35</td>
<td>.370</td>
<td>.375</td>
<td>.370</td>
<td>.390</td>
</tr>
</tbody>
</table>

NOTE:
1. Course 1 is at bottom. See reference layout drawing.
2. Distance is measured from reference elevation, generally bottom of tank.
3. Location is measured in degrees from reference, counterclockwise generally from centerline of manway.
4. Work this data with the reference layout drawing.
API TANK INSPECTION PROGRAM - ATMOSPHERIC
MINIMUM WALL CALCULATION

REPORT DATE: 1/1/2005

Tank ID: #2
DESCRIPTION: Big Tank

MATERIAL: A283-C MAX STRESS 55000
DIAMETER: 30

HEIGHT:

<table>
<thead>
<tr>
<th>COURSE 1</th>
<th>COURSE 2</th>
<th>COURSE 3</th>
<th>COURSE 4</th>
<th>COURSE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>39</td>
<td>24</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

SP GRAVITY: 1.2

STRESS (PSI):

<table>
<thead>
<tr>
<th>COURSE 1 - 2</th>
<th>COURSE 3 - UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>23600</td>
<td>26000</td>
</tr>
</tbody>
</table>

MW

<table>
<thead>
<tr>
<th>COURSE 1</th>
<th>COURSE 2</th>
<th>COURSE 3</th>
<th>COURSE 4</th>
<th>COURSE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.155</td>
<td>0.151</td>
<td>0.083</td>
<td>0.059</td>
<td>0.025</td>
</tr>
</tbody>
</table>

NOMINAL:

JOINT EFF. 1

SIDES TOP BOTTOM

CORR. ALLOWANCE

FORMULA:

\[T_{\text{min}} = \frac{2.6 \times D \times (H-1) \times G}{S} \]

WHERE:

\(T_{\text{min}} \) = MINIMUM ACCEPTABLE THICKNESS.
\(D \) = NOMINAL DIAMETER OF TANK IN FEET.
\(H \) = NOMINAL HEIGHT FROM THE BOTTOM OF EACH TANK COURSE TO THE MAXIMUM DESIGN LIQUID LEVEL IN FEET.
\(G \) = HIGHEST SPECIFIC GRAVITY OF CONTENTS.
\(S \) = MAXIMUM ALLOWABLE STRESS IN POUNDS PER SQUARE INCH.
USE (0.426)T FOR BOTTOM AND SECOND COURSE AND (0.472)T FOR ALL OTHER COURSES.
\(E \) = ORIGINAL JOINT EFFICIENCY FOR THE TANK, CALCULATED USING (0.7).

NOTE:

1. COURSE 1 IS AT BOTTOM OF TANK WITH HIGHEST NUMBER AT TOP COURSE.
2. IF CALCULATED Tmin IS LESS THAN .100", THEN Tmin SHALL BE .100".
Big Tank #2 - deflection settlement readings

Maximum allowable deflection = 0.258"
Measured deflection = .25"
Equipment Name: Big Tank #2
Owner: Lotsa Power, Inc.

Risk Category:
Date: 01/01/2005
Contact: John Smith

Last Inspection/Type: API-653, out of service
Next Inspection/Type: API-653, in-service in 2010

RECORD OF TANK DATA

CONTENTS:
Product: Black Liquor
Specific Gravity: 1.2
PH:
Capacity: 210,000
NFPA Placard:

LOCATION:
Facility Name: Lotsa Power, Inc.
Building:
Area: Tank Farm “B”

DESIGN INFORMATION:
Manufacturer: Tank Manufacturer, Inc.
Address: Anytown, USA
MFG Date: 1970
Service Date: 1971
Change Service Date:
DWG #: TM1204
DWG Location: Engineering
Description: General shell layout
Height: 40’
Width: N/A
Length: N/A
Diameter: 30’
Material: A283-C
Joint Efficiency: 1.00
Insulation: N/A
Lining:
Pressure - Design: Atmospheric
Operating:
Temperature - Design: Ambient
Operating:
Construction Code: API-650
Inspection Code: API-653

FOUNDATION:
Type: Solid Concrete
Drainage: See Report
Condition: See Report

ACCESS:
Top: Manlift
Bottom: Internal
Sides: Ladder/Manlift
Other:

GENERAL OBSERVATIONS: See API-653 report narrative for details on this tank.

FIELD REPORT SUBJECT TO ENGINEERING/ADMINISTRATIVE REVIEW